翻訳と辞書 |
Fisher transformation : ウィキペディア英語版 | Fisher transformation
In statistics, hypotheses about the value of the population correlation coefficient ρ between variables ''X'' and ''Y'' can be tested using the Fisher transformation (aka Fisher z-transformation) applied to the sample correlation coefficient. ==Definition==
Given a set of ''N'' bivariate sample pairs (''X''''i'', ''Y''''i''), ''i'' = 1, ..., ''N'', the sample correlation coefficient ''r'' is given by : Fisher's z-transformation of ''r'' is defined as : where "ln" is the natural logarithm function and "arctanh" is the inverse hyperbolic tangent function. If (''X'', ''Y'') has a bivariate normal distribution, and if the pairs (''X''''i'', ''Y''''i'') are independent, then ''z'' is approximately normally distributed with mean : and standard error : can be used to construct a large-sample confidence interval for ''ρ'' using standard normal theory and derivations.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fisher transformation」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|